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3 I. INTRODUCTION

Generally, the numerical approach to finding internal wave
elgenfunctions involves numerical integration of the differen-
tial equation over the entire ocean depth. For a deep ocean,
particularly when the horizontal wavelengths of interest are
much shorter than the ocean depth, numerical integration can be
confined to the first few hundred meters of the ocean. This ,
simplification arises from the fact that for a wide range of E
possible profiles the variation in depth dependence 1s confined
to the upper few hundred meters below the surface, after which i
the profile may be approximated by a decaying exponential. More- :
over, for horizontal wavelengths much shorter than the ocean {
depth the exponentially decaying profile model may be extended 3
to infinity, i.e., the ocean may be assumed to have infinite
depth. Since the solutions of the differential equation for
a continuously decreasing exponential profile are known in
closed form (they are Bessel functions of the first kind), nu-

merical integration of the differential equation needs to be
carried out only over the upper few hundred meters of depth,

within which an essentially arbitrary Valsala frequency profile
! may be prescribed, as derived from experimental data.

The numerical procedure to be presented here will provide

i any mode function and dispersion relation over any wavelength
range for an arbiltrary Vaisala frequency profile, as long as

it decays exponentially at great depths. The practical limita-
tion, of course, 1s the amount of computer time one is willing
to expend for results covering an appropriate dynamic range.

For ordinary ranges of physical interest, the required computing
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time appears to be of the order of minutes for a dispersion
curve and seconds for a mode function.

Dr. P. A. Selwyn, who was kind enough to review the first
draft of this paper, has called attention to the fact that
there already exists a computer program (Refs. 1 and 2) that
performs calculations similar to those undertaken here, but for
the case in which the ocean depth is finite. One would expect
that 1t might have been possible to modify the earlier program
so as to adapt 1t to the infinite depth case as well.

Although, in a sense, the questlon of that possibility was
moot by the time this information had been disclosed, neverthe-
less, the option still exists for a potentlal user who, if con-
vinced that the earlier program has sufficient advantages over
the present one, mlght be willing to risk whatever numerical
complications may be Involved in such a task. Therefore, it
seems proper to discuss briefly some of the major similarities
and differences between the two programs. Unfortunately, a

direct comparison of their computational accuracies and speeds ;
is not feasible at present.*

Both programs rely on the same general method, which is to
start with the appropriate boundary condition at the deep end
of the Vaisala frequency profile and numerically integrate the
differential equation over depth for selected values of the
wave number and phase velocity. These parameters are varied
according to some iteration procedure until the value of the
solution of the differential equation at the ocean surface 1is
sufficiently close to zero.

The earlier program solves for the phase velocity in terms
of the wave number. Here the converse is true.

#If the adaptation of the earlier program were based on the
same ldea used here to account for the boundary condition at
infinity, i.e., matchling with the Bessel function solutlon for
an exponential profile, the running time of the program would
be increased conslderably.




The earlier program uses a fourth-order Runge-Kutta method
for solving the differential equation, so that the error 1s of
fifth order in the 1lncremental step size. Here the Numerov-
Manning-Millman method i1s used, and the error 1s of sixth
order in the incremental step size. This gain in efficiency
occurs because the present method takes advantage of the fact
that the differential equation does not contain a first deriv-
ative term.

The earlier program uses a Newton-Rapheson iteration
scheme to find the eigenvalue, whereas here the regula falst
scheme 1s used. Generally, the Newton-Rapheson iteration con-
verges faster but may fail to converge 1f the trial value is
not sufficiently close to the true value. However, once star-
ted properly the regula falst iteration 1s guaranteed to con-
verge. ¥

Other differences between the two programs primarily have
to do with how they handle the problem of mode jumping, which
occurs in the calculation when dispersion curves for succes-
sive modes approach each other too closely. The details are
rather involved and it 1is difficult to assess the relative
merits of the two approaches without considerable further
study. However, it may be worth noting that the nature of the
regula falsi method permits the use of certaln eigenvalue prop-
erties, derived from the classical Sturm-Liouville theory,
that aid in resolving the mode-jumping difflculties encountered
by the program presented here.

The mathematical statement of the problem to be solved and
some propertles of the eigenfunctions and dispersion relations
needed in the subsequent development are summarized in Chapter
II. In Chapter III the general framework for the numerical

¥There are cases in which the convergence 1s extremely slow,
however. When this happens 1t has been found expedient to
switch to internal halving, which 1s less efficient, in gen-
eral, but which converges at a predlctable rate.
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solution of the dispersion curves 1s presented. The detailed
description of the algorithm for the numerical solution of the
differential equation and the associated eigenvalues 1is given
in Chapter IV. The computer implementation of this algorithm
INTMODE 1s described in Chapters V and VI. A more detailed
description is given in the Appendix.

Some examples of numerical results obtained with INTMODE

are presented in Chapter VII.
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IT. DESCRIPTION OF THE PROBLEM AND SOME GENERAL
PROPERTIES OF INTEREST

Interest here is ccenfined to internal waves with horizontal
wavelengths of at most a few kilcometers so that the effects of
the inertial frequency do not enter. Acccrdingly, thre rode

functions wm(y) are determined by the differential equation

2

ay_ .2

—= ¢ kB ]y (y) = 0, (1)
dy Qm :

along with the boundary conditions

wm(o> = 0,y1+iinwwm(y) = 0, (2)

where the depth y is measured from the surface y = 0. In (1)
K is a given wave number, @ 1is the mode frequency, and N(y)
is the VAisidld frequency profile associated with a vertical
thermocline in the ocean.

For a given value of K the differential equation (1) sub-
ject to the boundary conditions (2) determines uniguely the
infinite set of mode functions wm(y). For each mode a disper-
sion relation 1s thereby determined; that is, each Qm is a well
defined function of K,

Q. = Qm(K), m= 1,2, ..., (3)

over the interval

0 < K < =,
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trarily large each ﬁm asymptotically errroaches a single pesi-
tive constant {{; equal to the maximum value of N(y), the ViisZlZ
frequency. As K apprroaches zero the slope of each of the dis-
persion relation curves defined by (3)dgpproache? a different

m s

finite positive value l/um; i.e., A0 T < kg % VAT

The dispersion relations (3) can be expressed parametric-
ally in terms of a qguantity uw, which apprcaches u_ as K approaches
m

zero; i.e.,

Kn = Kp(w)
K (1) (4)
u
- m
Qm = m R

where the set of functicns Km(u) are determined by the differen-
tial equation

m 2,2 _ 2
g;g— + u°N (Y)Wm = K V., (5)
subject to the boundary conditions (2). From this point of view,
for each value of uy that is chosen above the minimum value

rneeded for the existence of the particular modes being considered,
the boundary value problem determines a set of positive real

eigenvalues® Km2(u), the square root of which provides the Km(u).

According to the general theory of eigenfunctions for the
linear second order differential eguaticn (Ref. 4), if N(y) is
plecewlse contlinuous, bounded and arproaches zero as y becomes
infinite, for filxed u there are a finite set of real positive
eigenvalues sz.* As u increases, the number of these eigenvalues
also increases, but for u smaller than some critical value there

*Actually, the convention is to regard the quantities =~ K,2 as
the eigenvalues, which results in their being characteriZed as
negative real.
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ray te nc eigenvalues at all., It is alsc ¥rcwn from the peneral
thecry that each K is an increasing functicn of v (cf. Fef., 5,

p. 357).

It is assured that the VEisdlZ frequency profile N(y)
decays exponentially at great depths. This beravior may be
characterized more conveniently by actually requliring that after
some depth Yo N(y) becomes an exponential furction; i.e.,

N(y) = tige 5y 2 Yo (6)

As observed in Ref. 1 the solution to the boundary value problem
assoclated with (1) and (2) for an exponential profile of the
form (6) is proportional to a function ¢(y) given by

A

o(y) = I, (ubl e D). (7)

Kb 0

Thus, the boundary conditions (2) can be restated as

v(0) =0, ¥(y) = AJ Npe °)s yayy, (8)

where A is a constant that can be chosen arbitrarily or to
satlsfy some normalization condition.

According to Ref. 3, a W.K.B. soluticn of (1) can be used

to determine the approxinmate mth

mode dispersion relation; 1.e.,
within the W.K.B. approximation the dispersion relaticn 1is

determined by the equation

1
/ pdy = m(m - 7), (9)
N>Q ¥
where
1/2
p(y) = £ vé(y) - %) (10)

‘/uzNa(y> - ¥° .
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III. THE NUMERICAL PROCEDURE TO DETERMINE DISPERSION RELATIONS

In this chapter the principles underlying the numerical
procedure to be used for calculating the dispersion relations
will be outlined. The details of the procedure, itself, will

be presented further or.

Since K is an increasing function of u, it follows from
(9) and (10), by considering the limit as K approaches zero,

t
that the minimum permissible value M for the m h mode is given

1
(-2
N(y)d
[

Since (11) 1s only an approximate formula, in order to guaran-
tee that a solution Km exists for the eigenvalue problem, values
of u chosen to calculate the dispersion relation for a given
mode should be somewhat larger; e.g., it would be prudent to
confine the choice of u to values such that

approximately by

3T
LS + (m=1)m . (12)

[N(y)dy

The smallest value of u given by (12) ought to be large enough
to guarantee the existence of a real Km but, ideally, small
enough to exclude the existence of any higher mode elgenvalue
Kn’ n >m. It will be found that this 1s generally true but
that there are some noteworthy exceptions.

r
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For any choice of positive K and u 1t is possible to find
a solution of the differential equation (5), subject to the
second condition in (8) which determines the necessary initial
values to be imposed for that purpose at the point Yo The
differential equation can be integrated numerically from y0
down to zero, where a value for Y(0) will thus be acquired. If
the maximum magnitude of the soluticn over the interval 0 < y < Yo

is |y
may be defined by

then a function ¥(u,K), determined by this process,

¥(u,K) = %ﬁﬂl--. (13)

max |

As defined, ¥(u,K) is a function of u and K alone; i.e., it is
independent of the normalizaticn constant A.*

Because there are cases in which (12) does not lead to a
satisfactory 1initial value for u (some modes are skipped) a
slower but safer procedure than relying on the W.K.B. approxi-
mation has been adopted here, The differential equation (5)
is solved numerically, subjJect to the second condition in (8),
with K set equal to zero and u set equal to a sequence of values

—7;—Jl———n For each value of y in the sequence the sign of ’
_/o' N(y)dy
v(o) is cbserved. When a change in the sign occurs the cor- |
responding value of py 1s used as a trial value, and it 1s

assumed that zero bounds K from below., If 1t 1s found that

modes are still skipped, the u increment is decreased and the

procedure repeated.

Ir K2 happens to be an eigenvalue, then ¥(u,K) vanishes.

Thus, the problem of calculating the dispersion relations is

¥Because it automatically relates error to a specifled dynamic
range, the normalization (13) 1s needed for stability of the :
numerical process used to solve (1l4). ]

10
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equivalent to finding the real (vositive) rccts K(u) of thne

transcerdentsl ecquaticn
¥Y(u,K) = 0 (14)

as the parameter u varies. For sufficiently small p there are
no rcots, while for u in the interval

<
ul-‘-u l-2

there is just one root, and for u in the interval

there are exactly two roots, etc.

To calculate the roots of (l4), interval halving or, for
more rapld convergence, the regula falsi (Ref. €) method can
be used. The numerical procedure given here does, in fact,
rely upon the regula falsi method to solve (1l4), although the
technlique of interval halving is used in certain circumstances,
to be descrived, in order to reduce computing time.

It is necessary to begin with two trial values for K(u),
K, and K, > Ky, such that ¥(u,K;) and ¥(u,K,) differ in sign,
to guarantee that the root K(u) lies between Kl and K2; l.e.,

Kl < K(u) = K2

Since K(u) must be positive, initially, the trial value Rl can
be zero. For the 1nitial urper bound K2, a quantity defined

by

RZ = Nmax’* (15)

where N 1s the largest value attained by N(y), will suffice.

X

seen by multiplging (5) by ¥v_ and integrating frcm 0 to «,
Integration of the derivativ® term by parts shows that that
term 1s negatlve.

\
{
{
|
{
*The fact that K, as defined by (15) is an upper bocund can be 1




-~

rer the hirher modes 1t will agzlin be necessary to begin
with Kl = 0.
calculated value of K for the mode one step down at the same

However, K2 may be set equal to the previously
value of w. That is, since it 1s known that

Koo (W) > K (u),

in calculating Km(u) a value for R2 given by

Ky ¢ Ko (u) (16)

2~ m-1
can be used.

As indicated, the trial value RE should be slightly 1less
than Km_l(u) to avoid accidentally falling back onto the m—lst
mode dlispersicn curve because of normal errors to be expected
in the calculation. A test should be included here to guarantee
that the choice of Rg is not too much less than~Km_l(E): the
function Y¥(p,K) must change sign in going from Kl to K2.*

In order to obtain a trial value satisfying (16), it is
necessary to have an estimate of X _,(u) that is known to be
too small. Since it 1s generally not the case that K _, would
have been calculated previously for exactly the value of u now
encountered in the mode m calculations, the estimate of Km_l(u)
must be determined by interpolation, e.g., between values
Knop(Hp) and K (w + Au), where

< < + .
My u My Ly

However, if the K versus u curves are concave upward such an
interpolation will produce an estimate that 1s too large; hence,
the desired slgn change in ¥(u,K) would not occur. On the other

¥ihile the regula falei method may still work even if this
requirement 1s not met, it is not actually guaranteed to con-
verge unless the sign change rule is imposed.

12
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hand, a cruder, cne-sided, interpclaticn that does guarantee
the sign change can be used. That is, instead of interpolating
< t

between K _,(u ) and K _,(u + Au) the trial value estimate
becomes ()

- K U

K2 =_ﬂ'_1._.r‘_.u, (17)

Hn

From the fact that Q .
function* it can be readily inferred that K2 defined by (17)

willl, in fact, be smaller than Km_l(u).

= Km 1(u)/u is a monotonic increasing

Once K has been calculated for the initial cholce of u for
a gilven mode, the value of u 1is increased by adding a small
increment Au. A corresponding increment for the lower bound
trial value Rl can be obtained from an interpolation analogous

to (17).

That thls can be done so that El continues to be a lower

bound can be seen as follows. By definition, i

K = uQ.
Therefore,
dx _ aq
du-n+u2ﬁ7' (18)

Although { increases monotonically with u, it is uniformly bounded
by the maximum Vd1is3l3 frequency; hence, the second term on the
right of (18) approcaches zero as u becomes arbltrarily large.

This 1is evident in view of the fact that, since the derivative

of log u is %, %% approaches zero faster than %. Then, for

large enough u, according to (18),

AK~Q A yp. (19)

¥IT It were not, a case of anomolous dispersion would be implied
since, as already observed, K 1s an increasing function of yu.

13




tloreover, because  1s a monotonle functicn of u, the estirate
of AX given by (19) 1s always too small.

Thus, the new Rl can be chosen in accordance with (19);

i.e.,

K

~ u
= + = + —
Kl Ku Qu Ay Ku Ay T (20)

where Ku 1s the previously calculated value of K corresponding
to the value of u before the increment Au is added. For modes
higher than the first (m = 1) the use of (17) to cbtain the
upper bound Rz continues each time u 1s incremented, while the
1 1s obtained from (20). For the first mode, how-
ever, (15) 1is the only estimate immediately available for the
upper bound Rz as W 1is incrementeg, although (20) can still be
used to estimate the lower bound Kl.

lower bound R




IV. DETAILS OF THE NUMERICAL PROCEDURE

A. SOLUTION OF THE DIFFERENTIAL EQUATION

The Numerov-~Manning-Millman method (Ref. &, pp. 204-205)

is particularly convenient for solving (5) numerically for given
values of u and K. The method requires two starting values; for
a step size h, w(yo) and w(yo+h) must be furnished initially. L
Then the differential equation can be integrated by means of a
single recursion relation that involves only ¥ and its second
derivative, which is obtalned from ¢ and the relationship sup-
plied by the differentlal equation, 1tself.

The starting values of y are obtalned by recognizing that
at Yo and yo+h the profile N(y) 1s an exponential function of

the form (6). Thus, in accordance with (7), at these points

L
b

¢y{y) can be set equal to JKb(ubﬁoe ).

When N(y) 1s prescribed numerically over an interval (O,yo)
the resolution of N(y) implies a limit on how small the step
size h may be taken. Conversely, a natural limitation on how
large h may be 1s the requlrement that 1t be small compared to
the minimum wavelength A to be consldered. Since the wavelength
1s given by

A=,

this means that the size of h 1s governed by the largest value
tc be considered for the wave number K.




B. SOLUTION OF THE EIGENVALUE EQUATION

The elgenvalues K that determine the dlspersion relation
for each mode are found by solving (14) over an appropriate
range of values for u. For this purpose the regula falsi method
(Ref. 6, pp. 4-5) seems most effective.

In some cases, convergence of the regula falsi method is i
too slow. Therefore, if twenty iterations occur without satis-
fying the prescribed error criterion the computer program
switches to interval halving with an error criterion applied
to K rather than vy.

e

C. SELECTING INCREMENTS OF u

In accordance with (12), the increment &u used to obtain
the starting value of u in going from the disperslon relation
for one mode to that for the next 1s ncrmally glven by adding
increments

Su = & (21)
f N(y)dy
0

until y(u,0) changes sign. At the start of the mode, kl i1s then
set equal to zero.

If the increment Au along a single mode is too large, a
Jump to the next mode may occur. This can be guarded against
by calculating y(u + Ay, K ) which in that case would have a
different sign than y(u, K ), where K is a lower bound used in
calculating Ku'

Evidently, as a practical matter Au must not be too large.
It 1s also true, however, that Au must not be too small. While,
theoretically, trial values are chosen so as to guarantee the
necessary sign change in ¥(u,K) for the regula falei method,
in practice 1t turns out that when Au 1s sufficiently small the

16




sizn change mayv, nevertheless, fzll t¢o occur. Thls is due fc
the residueal calculation error in the & that ccrresponds ¢o the
value of p before 1t 1s incremented. This error 1s sufficient
in some cases to overcomne the theoretical inequality relied
upon in the derivation of the rule for selecting R2.

A compromise rule for selecting the u increment is to let
Au be about fﬁ Su. That 1s, a reasonable choice that seems
adequate in practice is glven by

Ay = — 2 (22)

{/ N(y)dy
0

D. ESTIMATING THE ERROR IN K

The test used to determine when to stop the regula falst
iterations in calculating XK is the condition

|¥(u,K)|<e. (23)
The value chosen for thils purpose in current applications
is 10-7, which 1s intended to provide at least a 60 4B dynamic
range for the corresponding mode functions.

Therefore, the error in K is not given directly; however,
1t can be estimated by linear extrapolation. If wn is the value
of ¥(u,K) that Just meets the test (23) and ¥ _, 1s the value
of ¥(u,K) in the iteration just before that one, then the quan-

tity

ak _ %y - Kp-1 (24)
A T

where Kn and Kn-l are the corresponding estimates of K in the
two 1terations, 1s approximately the rate of change of XK wilth

R i .




ORI TenIaAT LU e e T

i

respect tc a change in ¢y (u,X). Then the error €y in ¥ corre-
sponding to € will be gilven approximately by
_ AK
€x = Iy ©- (25)

The error estimate €y can be used to prevent the anomaly
mentioned earlier, that too small a choice of Au can result in
a failure to obtain a sign change in ¥{u,K) using the trial
value il obtained by means of (20). The idea 1s tc make sure

that the error in the calculated value ¢of K is always negative,
i.e., that the calculated value of K 1s too small. This can be
done by subtracting €y after the iterations for K are completed.
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V. COMPUTER REALIZATION OF THE ALGORITHM

The computer program DISPER was designed to calculate ?
the K = K(u) relationship using the numerical techniques des-
cribed earlier in this paper. This program will write the
(K,u) pairs as calculated along each mode to disk or tape and
will plot a graph of the (XK,R) curves, referred to as disper- i

sion curves.

A. INPUTS

The inputs to the program are of two types: (1) para-
meters read in under a NAMELIST option, and (2) data points
read in from punched data cards.

1. NAMELIST/PARAM/X0, B, STOPK, STOPMU, ND, EPS

X0 Real
The X-coordinate of the last data
point of the numerically defined
function N(X). For the STD data
X0 = 220. m.

B Real
Decay constant
For the STD data B = 1300.

STOPK Real
The maximum K value for which the
user wants dispersion curves.

STOPMU Integer
The number of dispersion curves i
to be calculated. '

ND Integer
The number of data points +1 to be
read into the array N.
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2. Data Cards

ITITLE

B. OQUTPUTS

1. Printout

Real

The error criteria imposed on the
numerical solutions to the differ-
ential enuations. For the ETD
data EPS = 1.E-7.

Integer
Ten character title of the N(x)
values.

Real array

Dimensioned £00, read in on punched
cards under the format (8F10.%5).

N contains the equispaced data
points that numerically define the
function N(X). The polints are
spaced a distance of X0/(ND-2)
apart.

a. The parameters defined by the NAMELIST option are
listed at the end of the program for verification

purposes.

b. The value of
the values ©

(y)dy is printed next, followed by

¢. At the end of the calculations for each mode the
number of (K,u) pairs, the maximum estimated error
for K, and the complete 1list of (K,u) pairs for that

mode are printed.

d. Occasionally the error in K cannot be estimated.
When that occurs a message indicating this fact and
the current values of K and u are printed.

2. Disk or Tape

The values of the NAMELIST/PARAM/B, X0, STOPK, EPS, UD,
STOPMU are written on TAPE2 under the format (4E22.7, 2I5//).
Next the values of N are written to TAPEZ2 under the format

(8E10.5).

20




is written tc TAPEZ, fcrmat (//I5). The (K,u) pairs are then
written to TAPE2, format (2E22.7).

TAPEZ2 may be defined as a permanent file by using a cata-
log control card, or it may be defined as a magnetic tape by
using a label control card.

3. PLOT

A 10" by 10" grarh consisting of the STOPMU different
curves of the (X,Q) pairs is plotted at the end cof the program.

C. EXTERNAL REFERENCES

DISPER references several external sutroutines that must
be provided by the user through control cards that attach the
appropriate permanent files.

The necessary routines are listed below under the name of
the permanent file on which they reside.

1. INTMODE
INITIAL Reads the data values of N(X),
calculates the integral
[e o]
J‘ N(x) dx
0
GUESS Calculates "best" estimate of K
given u.
DIFF Numerically solves the differential
equation using the Numerov-Manning-
Millman method. (Called by GUESS.
XMUg Function to find MU@Z for each mode.
OUTPUTK Writes the (X,u) pairs to TAPEZ2.
PLOTER Sets up the calls to the CalComp

plotting routines.
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3 PSCALE Scales the axes to the calculated
‘ data. Called by PLOTER.

ERRPRO Processes detected errors through
a call to ABRTJOB. Is called by
all of the routines on this
permanent file.

2. IDALIB
PLOTS CalComp plotting routines called
1 PLOT by PLOTER.
‘ LINE
DAXIS
SYMBOL
NUMBER
ABRTJOB Error processor that generates
TRACEBACK, prints error messages,
and terminates the job. Called |
by ERRPRO. %
3. BESSEL
|
JBESS Routines to calculate the BESSEL
JAIRY functions. Acquired from the
GAMLN Argonne Natlonal Laboratory.

D. ERROR MESSAGES

We have attempted to anticipate some of the errors a user
might encounter when using DISPER under very general conditions.
If one of these errors is defected by the program the error
processor ERRPRO 1s called. ERRPRO does three things, (1)
prints a brief message describing the error, (2) indicates in
which routine the error og¢curred, and (3) terminates the job
without a dump.

A table of error messages generated by DISPER and possible
corrective actions that might resolve the problem 1s presented
below.
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TABLE 1. ERROR MESSAGES AND POSSIBLE
CORRECTIVE ACTIONS

Message Significance Action Issued By
END-OF-FILE,UNITS ND-1 is greater than the number Decrease ND or provide more data. INITIAL
of data points provided for N.
INDEFINITE OPERAND Solution to differential equa- Look for coding errors in the DIFF
@/9 tion is inconsistent. routine DIFF,
DIVISION BY ZERO Algorithm for solving the differ- Data points may be too far apart. JIFF
ential equation has broken down. Introduce more data, pernaps

through interpolation.

FIRST MQDE CANNOT Cannot find MUp for this mode. Reexamine data. mug
BE CONSTRUCTED

TOO MANY POINTS More than 500 (K,u) pairs are Decrease STOPK, or revise program OISPER
need to construct this mode. by redimensioning SAVEK, SAVEMU,
TEMPK, and TEMPMY.
K1 and K@ ON SAME Estimates for K are not upper GUESS
SIDE OF CURVE and lower bounds.
(1) EPS too severe. (1) Reduce EPS.
(2) Extrapolating inftial (2) Reduce STOPMU or
estimate of K1 beyond increase STOPK.
K values of the preced-
ing mode.

E. DETAILS OF J0B EXECUTION
The following 1s a sample card deck for executing DISPER.

1.

]BU.T?wn. NPAKER ¢ 353TR .
LaHEL 1P NTaPE e we RINGILBNOSaEPLOT s 2L Ne XueY o VSN=0)
ATTACH(REceFLMu=t+Inapn)
ATTACH(INAI TRe1D=2rG)
ATTacH{nicopINe 1D2PnMR2Y)
MAP (OFF,
LOAD(OISPAYN)
LnSET(LIR=1nAL Iu/pESCEL/ INTMODE)
{EXECUTE,
789
SPARAM xPg11Y,eR28, . nDxa)31,g10PKa 16 Tnovye23,Fneet FauTs
PIULSE
,010%0nUN0, 10300000
- . . - - o= i - .- 5 - - . . 'ﬂ.
-218388840-8183880R6-8183328%8; 41803887 218320839, 91828088 81859208 - 212838813
«710500000_n105000007010%504030,91080400n n1n%400%0.0T050n000,01050nunu, 510300404
.2‘0500000'0'OSuonoo‘olo‘ﬂnﬂ;o,Ol0509000.0105000:0.0!0500000,0!0‘00000."10500n09
¢71050000020105000002010571050,01050000070103000%0.010500000,010%0n0n0, 10300009
.710500000 n10500000=01051403¢ 01050A0an-n1n500030,070500000 07050000 10200004
,71050000020105%00000%01080n0%0 _U1020An0N nAABF62iS

6
7
8
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This wlll rrcduce a listirg cf the (%,L) pairs for each
rnode and a rplot of the clspersion curves. It will not create

a tare or permanent file of the (X,u) pairs.

If the user wishes a permanent record of the (K,u) pairs
additional control cards must be included.

For a permanent file the deck would contaln two additional

cards. The sample deck belcw is an example.

g 2.

IPVeTOeMT . NRapgR

{ RQUUEgT(let7o’N§\.3,37q“

LABEL (PLOTAPE 4 JRTING, LyNOSREALOT (D gl 0, xuy,yShind
ATTACH(RESer | smuz}eInaPp)
ATTACHIINA) 1R 1D=2eG)
ATTaCHINTSORING IN2PR.MRE1)

Map (OFF)

LAAD(OIcPRYN)

LOSET(Ltastnal lu/aFSeEL/ InTHOpE)
ExecuTE,

é CATALOG(TARF2.01SPCUBVE e INREN)

7
«PARAM x5.1||,.B,5..ND.|11.€70PK-‘!,(Tﬂouu,zi.tnﬁn!.F.YQ
PULSE

,5‘0500000:01obonooo‘olothoﬁo.ol0806000‘010560030.oiosonooo.:;:;:::::.::::z:::g
.;:ggg:g:oé::g:ooquo:ogo:nﬁo§o.9lo:oqoon;nln:ﬁoofo.njoSooooo:oio!oonno:nlosnou«§
13103000002 01050n000401 1314070 010%04900 7110500020, o1 53005050+ S3anenb: 11 n500ne]
A S A T TR
61osooono:otoSuoooofoioS«ﬁo§3:9|3&33332:252333352'"'°5°°°°° 010300un0, 210300000
789

he ¢ o o

If the (K,u) pairs are to be written to a magnetic tape
the Jjob stream might look like the example shown below:
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3.

IPUTOWMTD, NRaPER,,I237¢s

LAMEL (PLOYAPE o JRING,LaNOSREPLOT 40l 04Xty oySNaf)
ATTACH(RESEF L« Mz InaPD)

ATTACH(IDAI YR4lU=CG)

ATTacHinleepINs 1 n=PR .MRET)

LOAD(DISPRIN)
L”SE4?LIG"DAIlu’pgSQEL/[NTNnQE)
ExtcUTe,
LABEL (XeRTNR 1 BTCPCHRVE s XaSV o WIVSNEG)
REWINO (YaPE?)
f“”v(rAPE:.x)
8
spApa), '5-“‘-‘Bis'°ND"”'sTOPK'.'oﬁfnnuu-z;.fge:l.F-7g ‘
PULSE |
5 .0‘0'00000."10500006
«A1050001070105000007010544077,910207004 'n11300030,070500000,070%0n0n0 10390004
<810500000,0105000005010%04030,01050000°%n105000%0,01050000007050n00, 310200040
+3105000107010%00000°01051407%0,910%0000070110510020,01050n000 _01050aun0, 710500000
710500000 0105000002010%74030,010%00007"n10500070,010500000_ 010%0nun0, ~10500n00
1

05000007010500000°010%740%0 V10500000 ~0105000%0,010500000_070%0aun0, 71a500nAH
9 .

H
010500000.010500100°010504030,010500000°n10500030,010500000.010500uvn0_ 510500000

710500000;010500000%010514070,910%00000 - n0A876278

7

| "

! -~ Note the change in the job card as well as the additional
control cards.

1 Should both a magnetic tape and a permanent file be desired

the Job stream would look like the next example.




4.

1P)eTQeMTa . NOARER,Ja378A
ﬂrUUFSY(T.pc’.'vF)

LAMEL (PLOpAPE (o RING LaNORESLOT Nyl. OoXmeuoyShsoy
ATYAcN(nrtcrL.na-,.xnapn)
ATTacH{IDa! TR IUZCG)
ATTacHintSopIne sl MR

Ma® (OFF)

Lnap(DIePATN)

LNSET(L 1A= TR Al L/ RESEEL/ IV TV ADE!
ExecUTE,
CaTalO0G(TapEasuISECUNVE S INaPp)

Lan L(Xoﬂymgoq ln[eaanVEo!sGV.\MVSN-O)
REwIND (pagqFray

30,0
2000
40,01

.010%00Un0,71050000§

io onooo oao;onono “1n300000
10 onono 01050000 ~10%00000

osonoao 9!0500000 ~ln3900n0¢

oAo0n” Sn1nS5A003%0,070500000 _070%000n0, 31n%n0nng

10%
108
10%
10%1000~.n105000%0 nvnSonooo.ovo'onoao ~1nS0000n
108
}g:oooon nvnsogo:o nloSuoooo_ovo-onuno ~1n300009

cﬂPV(T.DE’.I)

789

SPARAM 4 3,111,4Re5,.ND2117,5T0PKg 1, STRBMY 24 EBCa) FaTe

PULSF

310500000-010%00400-010574¢20_Y10%0500~ n115400
sh105000n n*nlo> 00200‘0105n00£0:9 agooﬂ'n‘n 30
.510500000'01nbouQQO'olo*nnofo,D ngn0~-n105400
«710500090.0105000002010%14030,0
.A10500000° 010500000%010%n40%9 ¥

310500000° 0110500000-070504030,¥ 0
71050000020105600007010%n0070:010800007n0aR7627%
8

7

8
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VI. PROGRAM MODE

The computer program MCDE was designed to calculate
and plot the normalized mode functions ¥{(u,K). Given (1) the
dispersion curves created by DISPER, (2) a set of consecutive
mode numbers, and (3) a value for K, this crogram will use the
dispersion curves and linear interpolation to find the corre-
ponding u values., It will then calculate and plot the mode
function for each mode number.

A. INPUTS

The inputs to this program are of two types: (1) the
outputs of DISPER, and (2) a NAMELIST option.

1. TAPES

TAPE 5 1s defined to be the disk file or magnetic tape
produced by DISPER.

B,X2,3TOPK,EPS,ND,STOPMU The first record on TAPES
is the defining parameters
used by DISPER to create
the dispersion curves.
They are read in under the
format (4E22.7, 2I5//).
For definitions see inputs
to DISPER.

N Empirical data, format
(8F10.5). See Inputs to
DISPER. There willl be
ND-1 values of N.

PO r——————

; NPTS Integer

3 The number of (K,u) pairs

] : for the current mode.
Format (//I5).
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<1, MUl Real
The K and 17 values of
each mode, (2E22.7).

STOPX Real
The depth to which the
mode function is tc be
calculated. Must be
greater than or equal to
Xg.

IFIRST Integer
The first mode to be
calculated.

LAST Integer
The last mode to be cal-
culated. All modes bet-

ween IFIRST and LAST are
calculated.

B. OUTPYUTS
1. Printouts
a. The parameters defined by TAPES5 and the NAMELIST
option are listed at the end of the program for
verification purposes.

b. N is listed.

c. Mode number is printed followed by a list of PSI
values for that mode. Format is (U4E22.7).

2. Plots

10" by 10" graphs of the (X,PSI) values will be plotted,

one plot for each mode.

C. EXTERNAL REFERENCES

MODE references several external subroutines that must
be provided by the user through control cards that attach the
appropriate permanent files.

The necessary routines are llsted below under the name
of the permanent file on which they reside.
28
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1. INTMQDE

INITIAL

DIFF

s
n
]
=4
t
31

ERRPRO

INTNP

FUNCT2

FUNCT4

PLOTMOD

2. IDALIB

PLOTS
PLOT
LINE
DAXIS
SYMBOL
NUMBER

[ RS 3]
et i)
[
QL
0y
JLUNNEd]
bal
D
+
[$H)
ot -
[
O
€]

ol
[
30
@
L}
3
i
— O

[
._l
[SY]
t

%]

/ N(x) ax
0

Numerically solves the differen-
tial eguaticn using the lumerov-
Manning-¥iliman method.

o 9 v
Scales the axes he 2alzu-

to th
lated data. Called by PLCTMODE.

Processes detected errors
through a call to ABRTJOB. Is
called by all of the routilnes
on this permanent file.

Calculates the integral

o

[Nz(x)wz(x) dx

0

Calculates X * J(v,X)*¥2,
Called by INTNP.

Calculates the alternative
asymptotic approximation for
X *® J{v,X)¥*2, Called by INTUNP.

Sets up the calls to the Cal-
Comp plotting routines.

CalComp plotting routines
called by PLOTMOD.
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sE2RTJOB mrror procsssor that generates
TRACERBACH, rrints error messages,
and terminates the job. Called
by ERRPRO. ‘

GAUSS Numerical integrating routine
using Gaussian quadrature. Called
by INTNP. f

3. BESSEL
JBESS Routines to calculate the BESSEL
JATIRY functions. Acgquired from the
GAMLN Argonne National Laboratory.

D. ERROR MESSAGES

A table of error messages generated by MODE and possible
corrective actions that might resolve the problem is presented

below.
TABLE 2. ERROR MESSAGES GENERATED BY MODE
AND POSSIBLE CORRECTIVE ACTIONS
Message Significance Action Issued By
More than 500 pairs DISPER was altered to permit more Make similar changes in MODE. MODE
were needed for than 500 pairs to be calculated.
this mode.
The maximum K value The dispersion curves were not Rerun DISPER with STOPK greater MODE
on TAPES is less calculated to this value of K. than K, or reduce value of K.
than the K of in-
terest.
There are not STOPMU is less than LAST. Reduce LAST to less than MODE
enough modes on STOPMU, or rerun DISPER with
TAPES. STOPMU greater than LAST,
Indefinite operand Solution to differential equa- Look for coding errors in the DIFF
o/8 tion ts inconsistent. routine DIFF,
Division by Zero Algorithm for solving the differ- Data points may be too far apart. DIFF
ential equation has broken down. Introduce more data, perhaps

through interpolation.

E. DETAILS OF JOB EXECUTION

The following 1s a sample card deck for executing MODE,
when the dispersion curves are on a permanent file.
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IPDeM) o URLPF e 32370
ATTAC (MUUF s 11i=ryY)
FINUL=HUDE sL=Y)
MAP (OFF)
ATTACHCINTMOLE o LDEP0)
ATT CrlREDSEL e T1ZP)))
ATTaCmCIpALLRs TUSCL)
LABEL (PLOTAFL sweR iz 0| SNUSSEPLUT 9pSLUI RSV eVSNEY)
LuSET (L L= [INTMNPE/nESSELY 1hhalip)
LoV
39
slnpUT 1F1R3r=1.Lnstsz,n=.oe.51UPA=4:U.,

€
7
3

Next is a sample card deck for executling MODE when the
dispersion curves are on a magnetic tape. Note the VSN number
should be the one assligned at the tlme DISPER executed.

1PL*MT ) UNAFPFRI32 475m
ATT AL~ (MUUF 2 [u=zPD)
FIN(I=MUDE sL=")
MAP (U ¥}
ATTacm CINTAOLF o lUEP)
ATV acn (GEISEL S TLEP,,)
ATTacrtlpaLlns IuECoL)
LABEL (TAPES e HeNORI NG e L2p i 3P CURYE 9 VDS HS5)
LAGEL (PLOTAPFaweR iyl SNUSLEPLUT 90=L 02 XxSVevSNaY)
LOSe THLIG=INTMOUE/ e S5EL/ INALLD)
GO,
8

’5INP“T IFIRST=1oLAaST=29A2, 12 e3TUPKAEE50,.9
6
£

39
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VII. EXAMPLES OF DISPERSION RELATIONS AND EIGENFUNCTIONS
OBTAINED WITH INTMODE

The two Vaisala frequency profiles considered in the sample
calculations employing INTMCDE are shown in Fig. 1. The prcfile
labeled "expcocnentlally stratified ocean" corresponds to a deep
ocean without a therrocline and N(y) = .0C828 exp - y/1300
radian/sec, where y is in meters. This profile is identical to
the one used by Garrett and Munk (Ref. 7). For the exponential
V&disdld frequency profile, the mode functions are Bessel func-
tions. Consequently, results of INTMODE for this profile can
be compared with results based on analytical formulae, thus
providing a check on the accuracy of the numerical technique.
The sharp thermocline, labeled "STD data set"”, is taken fron
(Ref. 8) and 1is based on measured towed thermistor chain data
In the tropical Pacific Ocean. The data extends to a depth of
220 meters; at greater depths an exponential profile with a
decay constant of 1300 meters is assumed.

The dispersion curves for the first 25 modes, correspond-
ing to the STD data set, are plotted in Fig. 2. The angular
frequency 1s in radians/sec. For the STD data set, plots of
the first four Internal wave mcdes are shown in Fig. 2 for
K = .01 radians/meter ()X =~ 628m) and in Fig. 4 for K = .02
radians/meter (A =~ 328m). The mode functions are all normalized

/ vi(y) No(y)dy = 1.
0

in accordance with

Since N(y) decays exponentially with depth, this normalization
constraint leads to a progressive increase of the mode maximun
with mode number and depth, a feature corroborated by the plots
in Figs. 3 and 4.

33
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INTMODE is capatle of yielding mcde functions of any order

(subject to course to the resoluticn of the data with respect
tc depth. Figure 5 shows a plot of the 25th mcde.

The dispersion relations for the exponential profile are
shown in Fig. 6; the first four mode functions are shown in
Fig. 7 and Fig. 8, for XK = .01l and K = .02 radians/meter,

respectively.

Examples of dispersion relations for cother profiles are
shown in Figs. ¢ and 10. The corresponding profiles are, re-
spectively, those referred to in Fig. 12 as STD data and NRL
data. An additional example of dispersion relations, corre-
sponding to a pulse shaped profile, is shown in Fig. 11. This
profile is of the form

N(y) = 0; 0 <y < 65.45m,
N(y) = .0105 rps 65.45m < y < 1lllm
N(y) = 0; y > 111lm.

In the region y < 1llm N(y) was approximated by the rapidly
decaying exponential exp - y/5.

34
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FIGURE 3. The first four internal wave modes for the STD
data set (Fig. 1) (A =~ 628 meters).
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FIGURE 4. The first four internal wave modes for the STD
data set (Fig. 1) (A =~ 314 meters).
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FIGURE 5. The 25th mode for the STD data set (X =~ 628 meters).
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Figure 6. Internal wave mode dispersion curves for an exponen-

tially decreasing Vdisd1d frequency profile.
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